
THE ART OF PLATFORM ENGINEERING

A RUSSIAN DOLL EFFECT

+ explore Self-Service and Internal
Developer Portals inside

https://www.cycloid.io/

TABLE OF CONTENTS

3

Introduction 3

A self-service portal at the heart of Platform Engineering 5

Internal Developer Portal as the bridge between teams 8

The Art of Platform Engineering 11

Conclusion 16

3

Ever found yourself scratching your head over which tools are the perfect fit to kick-start your

platform engineering journey? You're not alone. It's easy to get lost in the jumble of acronyms like

IDP and SSP, especially when they seem to promise similar things but deliver quite differently. You

might expect an Internal Developer Portal (IDP) to save your devs from repetitive tasks and boring

work, while what you are actually searching for is a Self-Service Portal (SSP) to simply streamline

your automation.

This ebook is here to clear up the confusion once and for all. It will guide you through the maze of

platform engineering tools, from the SSP that gets your automation humming, to the IDP that

streamlines team collaboration, from smooth app building and documentation to easy deployment

environments. And let's not forget the bigger picture – Platform Engineering solutions that go

beyond the code, helping you design, implement, and maintain a robust ecosystem for software

development and infrastructure management.

But we're not just here to regurgitate industry jargon. We're shaking things up by challenging the

status quo. According to Gartner, the core of any platform engineering strategy is an IDP that

provides a curated set of tools, capabilities, and processes for easy consumption by the

development team. But let's face it, the need to consume IT infrastructure, particularly in large

organizations, goes beyond developers.

This ebook is reclaiming the narrative that Platform Engineering focuses on empowering everyone

across your organization, from coders to stakeholders, and tackles the challenges of modern

software development and infrastructure management together.

Demystifying Platform Engineering, SSP, and IDP

The Russian Doll Effect

https://www.gartner.com/en/articles/what-is-platform-engineering
https://www.gartner.com/en/articles/what-is-platform-engineering

4

In fact, the relationship between SSP, IDP, and Platform Engineering resembles a Russian doll –

each nestled within the other, revealing layers of complexity. It's like a puzzle where every small

detail matters, even if it seems insignificant at first glance.

Let's also consider that while platform engineering has core principles that apply universally, how

it's put into practice can vary greatly depending on factors like the industry, goals, and services of

the organization. Think of it as a tailored suit – what works for a software company might not be

the best fit for other types of organizations. This customization, along with the scale and whether

the focus is more on product development or internal services, can shape whether an IDP, an SSP,

or Platform Engineering is the top priority.

Platform Engineering

All skill levels

Project LifeCycle

Ecosystem collaborationSimplified UX/UI

CD - Orchestration

FinOps & GreenOps

Resource management

Drift detection

Multi tenancy

Security

Compliance

Plug Ins Ecosystem

DevX

Tech skilled

Software libraryContinuous integration

Dev collaboration Documentation

Internal Developer Portal

Self Service portal

Service Catalog Automation RBAC

Software Development & Infrastructure Management

5

A functional self-service portal is the beating heart of your digital transformation journey and an in-

tegral part of Platform Engineering. Not to toot our own horn, but here at Cycloid we are somewhat

experts at what makes a great SSP, since after all, it is our bread and butter.

Start with understanding the whos and whats of your process and create a clear governance

framework. Who is the project owner? A good self-service portal should have defined roles and

accesses for every user.

3 most important things that will make SSP a success in your organization:

Governance – create order amidst chaos

Once you’ve got your roles down, choose which services you want to integrate into your service

catalog and self-service portal which is maintained by the platform team. We would also advise

a full GitOps approach for this to enhance efficiency.

Service Catalog – build a service buffet

A self-service portal at the heart of Platform Engineering

1

A great SSP lets anyone interact with tools and the cloud without needing to be a technical ex-

pert. Roles and accesses are built-in and there’s minimal room for human error because your

automation takes care of the manual tasks.

Automation – relieve your devs’ plates

6

While the Gartner definition of Platform Engineering focuses heavily on the developer experience,

that's just one piece of the puzzle. Your platform isn't just for developers; it's a tool used by a vari-

ety of teams, including Solution Architects, Ops Teams, DevOps, FinOps, Security Teams, or

Network Teams. To truly succeed, it's vital to take into account their satisfaction and efficiency.

After all, it’s the people who make your business tick.

A note on DevX

Developers by trade Developers by default

Developers, software engineers

Working with deployment tools,
automation, infrastructure

Solution Architects, Ops Teams,
DevOps, Security also Researchers in
Universities, Webmasters, or anyone
else who is required to code as part

of their job but it is not their core
function

Working with internal tools,
dashboards, or admin interfaces

DevX: boosting developer
productivity by reducing friction in
tasks such as coding, debugging,
testing, and deployment.

UX: boosting team productivity by
providing intuitive interfaces, robust

documentation, and efficient
workflows.

Developers vs End-users experience

7

By providing a user-friendly interface to define and deploy cloud resources, you can abstract away

the time and effort required to set up complex infrastructure configurations. This is the main

difference between a self-service portal and an IDP:

In the next part, we’ll dive further into the specifics of internal developer portals.

Removing the requirement for users to understand how the infrastructure is being deployed.

Allowing non-technical users to provision infrastructure and applications using a self-service portal

Here’s a real-life use case:

A market research company finds themselves in need of infrastructure to support their work.

While coding may not be their main gig, it's often necessary. A self-service portal becomes their

go-to solution, offering the necessary tools for both the developers writing code and interns

conducting market research. As for developers, the usefulness of an IDP can vary depending on

the complexity of the code and the level of collaboration needed. It's all about finding the right

tools to streamline the process and get the job done efficiently.

8

An internal developer portal (IDP) is a layer on top of your self-service portal that offers a suite of

tools to streamline the entire software development lifecycle. Unlike a self-service portal that fo-

cuses on functionality and automation, an IDP is all about developers’ collaboration and simplified

access to automation for everyone involved.

An IDP is typically designed with the expanded user circle in mind and includes both developers by

trade and developers by default. This means that the portal features better, more intuitive UX to im-

prove DevX and overall team experience alike. By providing a centralized and cohesive environ-

ment, an IDP aims to enhance developer productivity, foster collaboration among team members,

and ultimately accelerate the delivery of high-quality software products.

Take a look at the following add-on features that distinguish a successful internal developer portal.

Internal Developer Portal as the bridge between teams

2

9

Non-developers that we outlined in the last chapter, such as project managers, QA testers, and

even business stakeholders, all benefit from having access to automation tools through an IDP.

These tools empower non-developers to keep track of projects, identify bottlenecks, and gain in-

sights into the development process without needing deep technical expertise.

Access to automation for non-dev team members

As we said before, DevX is not simply about pizza parties or even extremely efficient workflows –

it’s about creating an environment where everyone in your organization, from software engineers to

management, can do their best work. An IDP expands the definition of DevX to include non-techni-

cal members of the team, which means the portal has to accommodate their non-technical needs.

That’s why UX – everything from pretty icons to intuitive functionality – will be the puzzle piece

that makes your platform complete. It’s not just user-friendly – it’s user-oriented! Here are a few

UX-specific things an IDP should have:

Simplified UX for better DevX

For a successful IDP, collaboration isn't just a buzzword – it's baked into every corner of the portal.

Think of shared repositories where developers can stash their code for safekeeping, version con-

trol to keep everything running smoothly, and code reviews to make sure everyone's on the same

page. And let's not forget about those integrations with all your favorite development tools, making

it easier than ever to work seamlessly across platforms.

Team harmony through improved collaboration

Address the users’ needs – satisfy both devs and devs “by default.”

Provide efficient functionality – can it do the thing for a minimal number of clicks?

Safeguard important infrastructure – don’t underestimate human error and put security guardrails in

place

10

But here's the best part: all of these features aren't just there to make developers’ lives easier

(although that's definitely a bonus!). They're designed to streamline the entire software develop-

ment lifecycle, from ideation to deployment, and foster open communication and collaboration

within your development teams.

Documentation guides developers through the jungle of code and features. For newcomers, docu-

mentation is their lifeline – it helps them bootstrap their projects and hit the ground running. It's

also a valuable resource for seasoned developers, offering insights into advanced features, best

practices, and tips and tricks to supercharge their workflow. Moreover, documentation serves as a

central hub where developers can share their knowledge, contribute their insights, and collaborate

on projects together.

Sharing in the knowledge of documentation

Myth buster: should you use Backstage?

Backstage, the Spotify open-source platform has made big waves in the platform engineering

space, making every company believe they can achieve developer bliss with just a bit of

tinkering. And it’s true, its plug-in system makes internal developer portals extremely

customizable and collaborative. However, if you’re new to this world, its DIY approach can make

it more confusing than worth it. Backstage works best in tandem with other, off-the-shelf

solutions to guide your digital transformation. That way, you get the best of both worlds – the

accessibility of an established platform with the versatility of Backstage.

11

We’ve finally arrived at the big doll, the big boss that everyone (in our humble opinion) gets wrong.

That's why it typically takes nearly 3 years, and often even longer, to start seeing results from

platform engineering.

An engineering platform is a comprehensive solution that transcends the boundaries of SSPs and

IDPs. It’s an overarching concept that spans a wide array of functionalities, including resource

management, ecosystem collaboration, and plug-in integration.

Designed to cater to individuals of all skill levels and departments, it offers a user-friendly

interface and customizable features to suit diverse needs and workflows. Whether you're a

developer, a project manager, or a member of the operations team, the platform is tailored to

empower you with the tools and capabilities necessary to thrive in today's fast-paced digital

landscape. Let’s take a look at what these tools are.

The Art of Platform Engineering

3

12

Platform engineering allows users with a stake in the game (managers, CFOs, or even

Sustainability Officers) to zoom out of the day-to-day software development tasks and look at the

bigger picture. Project lifecycle management and observability are crucial for gaining insights into

the platform’s performance and behavior, which involves integrating tools like event and project

monitoring, cloud cost transparency, application performance, infrastructure health, and user

interactions.

Efficient management entails monitoring key performance indicators (KPIs), setting up alerts for

critical events, and leveraging logs and analysis tools for enhanced visibility into application

behavior, error tracking, and issue resolution. Additionally, setting up tracing systems helps to

follow requests as they move through different microservices and components. This helps your

teams identify performance bottlenecks, understand latency issues, and optimize system behavior.

Project lifecycle management – observability

Plug-ins allow you to empower users to tailor the platform to their specific needs. Any missing

feature you can think of – simply integrate it into the platform via a plug-in and extend its

capabilities!

Such flexibility improves scalability, so as your user base grows or changes, you can customize

your platform accordingly. And if third-party devs want to join in the fun and contribute to the

ecosystem growth, they can, as new functionalities are easily integrable.

Additionally, it speeds up development by recycling existing components, meaning less time spent

reinventing the wheel!

Ecosystem collaboration – plug-ins

Continuous Deployment involves automating the process of pushing code to the infrastructure.

While some applications are straightforward and stateless, complex industry applications often

have dependencies that require updates or notifications.

Continuous Deployment and orchestration

13

This complexity can be difficult to manage manually.

Automating the process not only minimizes human error but also promotes consistency across

development environments, increasing developers’ confidence. Moreover, the incorporation of

continuous monitoring and feedback mechanisms within CI/CD pipelines ensures that only

thoroughly tested and reliable code progresses to production.

By combining FinOps and GreenOps approaches and placing sustainability

at the orchestration layer to empower users across the organization to

consume less infrastructure, organizations can reduce software

delivery/cloud costs and even their carbon emissions.

“
Benjamin Brial, the founder of Cycloid, stated in an article for DevOps.com:

Keeping an eye on where and how your cloud budget is being spent, as well as slashing your

carbon emissions is an integral part of a platform engineering strategy. An engineering platform

can integrate cloud cost management and carbon footprint management to ensure that your

software development process is not just human resource-efficient, but also financially

streamlined and environmentally conscious.

FinOps & GreenOps

When using Infrastructure-as-Code (IaC) tools to set up infrastructure, keeping track of Drift is

crucial. Drift happens when there are differences between what you planned and what actually got

set up, often because someone made changes manually. Fixing these differences might mean

tweaking your IaC code or rolling back changes. Drift detection is an ongoing process that needs

continuous monitoring to make sure everything stays on track. It's like keeping your garden tidy –

you have to keep an eye on it regularly to prevent weeds from taking over.

Drift detection – an ecosystem matter

https://devops.com/how-to-get-platform-engineering-just-right/

14

When it comes to drift detection, different situations call for different approaches. For portals

focused on technical teams (IDPs), drift detection might not be the main focus. But at the Platform

Engineering layer, where there's more comprehensive infrastructure management through a

Self-Service Portal, drift detection becomes really important to make sure everything stays in line.

Drift detection isn't just useful for developers, though. It's also important for security teams to

catch any potential vulnerabilities, and for compliance and governance teams to make sure

everything follows the rules. Ops teams use drift detection to fix issues before they become big

problems, and business stakeholders care about it because it affects how reliable their apps and

services are.

Resource management offers a way of maintaining control across multiple cloud platforms and

accounts and keeping resource usage in check per project and environment.

As companies increasingly adopt dedicated accounts per project across various cloud platforms,

management becomes challenging.

Centralizing resources into a unified platform facilitates the detection of “shadow IT” (informally

deployed IT solutions outside of official channels). This not only helps find resources that aren't

being used to save money but also helps make cloud practices more eco-friendly by getting rid of

resources you don't need (which is also great for the environment!).

Resource management – keeping in control

Multi-tenancy is a software architecture concept which means that one software system serves

many users or groups at once, with each user having their own private space. These users or

tenants can be individuals, groups, or even entire organizations, each with their own isolated set of

data and configuration settings. Multi-tenancy allows for efficient resource utilization, as multiple

users share the same infrastructure while maintaining data privacy and security.

Multi-tenancy – controlled flexibility

15

But it’s not simply about sharing; rather, it's about fostering autonomy and promoting
governance best practices. Multi-tenancy effectively dismantles isolated solutions that
various teams might be utilizing, bringing the entire organization together. By embracing
multi-tenancy, platforms can ensure streamlined operations, enhanced collaboration, and
strengthened governance across the board.

16

We hope you get the reference to the Russian doll now. A self-service portal is the heart of your platform,

responsible for automation and governance. It’s typically designed by Platform Engineers and used by

developers.

The internal developer portal takes all the great bits an SSP offers and makes them better, focusing mostly

on developer collaboration and DevX.

Platform Engineering is all about setting up a smooth system, no matter how big your crew gets.

Each of these services – SSP, IDP, and Platform Engineering work as a complex layer on top of each other,

but there wouldn’t be an engineering platform without a self-service portal.

Whether you're starting with a small team of developers or scaling up to involve the whole organization,

remember to keep the focus on governance, repeatability, and reproducibility. When it comes to picking the

right fit, think about your team's needs, your business goals, and what tools will make their jobs easier.

So go ahead, and make your choice with confidence. After all, with the right tools and the right
team, there's no challenge you can't conquer!

9

Cycloid is the sustainable platform engineering company with a mission to promote efficient

infrastructure and software delivery alongside digital sobriety. Cycloid optimizes platform

engineering, alleviates cognitive load on IT teams, and enhances Green IT and FinOps practices.

Placing sustainability at the orchestration layer, the Cycloid engineering platform is a

comprehensive solution for platform engineering teams and end users, delivering optimal UX with

modular self-service portal access to project lifecycle, resource management, FinOps and

GreenOps capabilities. With a zero lock-in, GitOps first approach, Cycloid encourages a culture of

digital sobriety that flows through an organization, making DevOps and cloud delivery more

efficient and cost-effective.

About Cycloid

Follow us
cycloid.io @cycloid_io linkedin.com/company/cycloid github.com/cycloidio

https://www.cycloid.io/
https://twitter.com/cycloid_io
https://www.linkedin.com/company/cycloid
https://github.com/cycloidio

